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Compression fracture statistics of 
compacted cement cylinders 
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A statistical analysis of the compression fracture stress of compacted cement paste 
cylinders was made by comparison of normal, logarithmic normal and Weibull 
distributions. The influence of specimen size on the fracture stress was determined and 
compared with predictions based on crack propagation results. The results of the analysis 
show that the Weibull modified statistics fit in very well with the behaviour observed. 

1. Introduction 
In uniaxial compression de Jayatilaka and Trust- 
rum [1] predicted that the failure stress of  brittle 
materials should follow closely a normal distribu- 
tion with mean values independent of  the volume, 
and variance inversely proportional to the volume. 
In the case of  uniaxial tensile stress, propagation 
of  a single crack leads to total failure, which is, in 
general, not true during uniaxial compression. So, 
if at a constant tensile stress field o, the volume V 
is arbitrarily decomposed into V1 and V2, the 
following equation must hold: 

F(V, + V2, o) = F'(V,, o)F(V2, o) (1) 

Vl (-'l V 2 • r  Vl  V V 2 = V 

ff'(V1 + V2,o) is the cumulative probability of  
non-failure in the volume V = VI + V2, where V1 
and V2 have no common points, which is the 
meaning of V1 r3 V2 = r and I11 U V2 = V. F(V/, o) 
is the cumulative probability of non-failure in V/. 
The functional Equation 1 can be easily trans- 
formed to the following differential equation: 

d F  
~ -  = constant x dV (2) 

with the boundary conditions: 

F(0, o) = 1, ~(oo, o) = 0 (3) 

The first condition can be deduced from Equation 
1 and the second means that if a body is suf- 
ficiently large, it must break at a finite tension 
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o>~01. According to this, the constant of 
Equation 2 must be a negative function of o. The 
function r is crescent with o. Taking this into 
account, Equation 2 becomes: 

d F  dV 
- x r  ( 4 )  

Y Vo 
where Vo is the unit volume and r can be 
defined as the specific risk of failure. Integration 
of  Equation 4, with the boundary conditions given 
in Equation 3, gives 

F(V, o) = exp --~00r (5) 

The final formula for the cumulative probability 
of  failure F(V, o) = 1 -- F(V,  o) is: 

F ( V , o )  = 1 - - e x p  --~oor (6) 

which is valid for uniaxial constant tensile stress. 
In the case of  crack propagation instead of failure 
Equation 6 is valid for both tensile and compres- 
sion stress. Equation 1 can be easily generalized to 

Y. (vi,  oi) = r I  F(v i ,  ai) = 
i=1 i=1 

= exp -- Vo ~ Vi4)(~ (7) 

In the limit, when V i-+ O, N-+oo, the celebrated 
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Weibull [2, 3] formula for variable uniaxial stress 
is obtained: 

F(o) = 1 - -exp -- ~[o(r)] dV (8) 

where o(r) is the uniaxial stress field. 
The objective of this work is to confirm Equa- 

tion 8, for a cement paste cylinder tested in com- 
pression, with the de Jayatilaka and Trustrum pre- 
diction. 

2. Experimental methods 
The samples were prepared with commercial Port- 
land Cement without additives having the follow- 
ing composition: 20.42% S; 7.16% A; 2.76% F; 
61.40% C and 1.72% M (all wt %) specific surface 
of 305m2kg -a, and a retention of 13.6% in a 
moist 45pro sieve. The cement was mixed with 
3 wt% water, and was placed in cylindrical steel 
moulds with a radius to height ratio, R/H = 0.25, 
and R values of: 0.0095, 0.011 and 0.013 m. The 
cement placed in the moulds was compressed at a 
pressure of 27.5 MPa (280 kgfcm-2). This pressure 
was sufficient to produce good cohesion to avoid 
handling problems. The specimens obtained were a 
batch of 575 with R = 0.0095 m; another batch of 
30 with R = 0.0095 m, 30 with R = 0.011m and 
30 with R = 0 . 0 1 3 m .  To improve further the 
overall resistance, the specimens were kept in a 
humid chamber for 24h. In order to complete 
hydration (~--30% water), the samples were sub- 
merged in water to saturation and again placed in 
the humid chamber for six days in order to finish 
the curing process. They were then heat treated at 
100~ for 24h to stop hydration, and stored in a 
desiccator until they were tested in an Amsler 
manual machine by compression. 

The compression stress of failure, for the first 
575 samples (R = 0.0095 m), was ordered in inter- 
vals of 0.49 MPa (5 kg cm-2), and for each interval 
the cumulative probability of failure F(o) was 
computed. 

In order to make a statistical comparison, the 
Kolmogorov-Smirnov limits [4] for 95% confi- 
dence, and the X 2 test, were performed for differ- 
ent distributions of the 575-samples set. 

We took into account the fact that the data 
have been used (to estimate the model parameters 
by simply reducing the number of degrees of free- 
dom of the distribution of the statistics by one, 
for each parameter estimated from the data [4]. 
Rearranging the lower populations' intervals, the 
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same number of degrees of freedom was obtained, 
and was 27 .  

For the normal distribution the following 
values are obtained: 

1 s [(cr-0)2 l 
F(cr) - Sa(2rr)l n -~ [ 2SZ ] act 

N 

1 ~ oi 131.4MPa (1340kgfcm -2) 0 Ni=l 

1 u 
- - Sg N - - 1  i= (~ 0)2 (9) 

S O = 11.60 MPa (118 kgfcm-2), 

X 2 = 30.8 <40.1 

For this distribution and the corresponding 
number of degrees of freedom, and 95% confi- 
dence, ?(2= 40.1. Fig. 1 shows that the Kolmo- 
gorov-Smirnov test indicates a reasonable fit. 

For the normal logarithmic distribution, the 
Kolmogorov-Smirnov test indicated a better fit to 
the data (Fig. 2), and the calculations for the X 2 
test are: 
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Figure I Kolmogorov-Smi rnov  test for 95% confidence 
in a normal  distr ibution for compression.  
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Figure 2 Kolmogorov-Smirnov test for 95% confidence 
in a normal logarithmic distribution. Same test as in 
Fig. 1. 

1 ~Vexp [ (y -2P)21 f ( o )  - 
Sy(27r) 1/2 -= 2S• J dy 

1 N 
y = lno,  2 = ? ~ y i = 4 . 8 7  

i=1  

1 
= - Y__, O ' - Y ) = ,  s ,  = o .o88  

Sy N - - 1  i= 1 

X 2 = 27.7 < 4 0 . 1  (10) 

In the case of  the Weibull distribution, for uni- 
axial compressive stress taking the Weibull func- 
tion we obtain 

( O ' - - 0 " 1 1 m  ' 0 . ~  O- 1 

~((~)= ~ ~o ] 

c)(a) = O, o < o l  (11) 

where Oo, m and ol are the Weibull parameters, 
assuming that the stress field o(x, y,  z ) ~ o  = 
P/TrR 2, where P is the applied compression force. 
In accordance with Equations 8 and 11 and after 
some rearrangement: 

in in = m i n ( o - - o l ) + l n  

(12) 

is obtained. Fig. 3 shows a plot of  ln ( ln{1 / [1 -  
F(a)]}) as a function of  ln(a -- o 0. With a c h that 
maximizes the correlation coefficient for a straight 
line, the following constants are obtained: 

al = 97.1MPa (990 kgfcm -2) 

m = 3.12 

o0 = 80 .8  MPa (824 kgfcm -2) (13) 

X 2 = 3 1 . 2 < 4 0 . 1  

In order to investigate the dependence of  F(a)  
on specimen size a Weibull plot was drawn (Fig. 4) 
with the 30 samples each of  R = 0.0095, 0.011 
and 0.013m. Using different volumes and Equa- 
tion 12 we obtained 

{1n[1 ln{1 [ 
= ln(V ) 

in 

(14) 

In accordance with Equation 14 the Weibull plot 
for a batch of  samples with V2 > V1 is the plot of  
V1 plus ln(V2/V1). Fig. 4 shows what can be 
expected for V1 (R = 0 . 0 0 9 5 m )  and V2 (R = 
0.011 and 0.013 m). As is evident no volume influ- 
ence can be detected. 
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Figure 3 Kolmogorov-Smirnov test for 95% confidence 
in a Weibull distribution. Same test as in Figs. 1 and 2. 
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Figure 4 The non-influence of volume in the cumulative 
probability of failure. 

3. Discussion 
The normal distribution is better than the WeibuU, 
as is de Jayatilaka's first prediction [1]. But the 
logarithmic normal is better than the normal, and 
the X 2 tests do not reject any of the three. The 
second de Jayati!aka prediction, the non-depend- 
ence of size, is supported too. But in a recent work 
[5] the size influence in traction was investigated 
and negative conclusions were obtained. This is 
not in agreement with de Jayatilaka's conclusions 
because if the Weibull distribution is not good for 
compression, it must be good for tensile stress. So 
a change in the Weibull distribution is proposed 
and after [5] the differential Equation 4 changes 
to: 

Y 
which leads to: 

F(o) = 1- -exp  

dV 
v-4,(a) ( i s )  

(16) 

where Vm is the threshold volume for which fail- 
ure occurs. The integration of Equation 16 is very 
difficult because o(r) is unknown, but if as a first 
approximation, o can be considered as constant, 
then Equation 16 gives 

[ V ~ -~(a) 
F(o) = 1-- \Vm] (17) 
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This equation is, in a WeibuU plot, a straight 
line, as Equation 12, but predicts that when 
Vm/V-~O, F(a)is independent of V. Equation 
17 gives 

ln{ In [1 _ ~ ( o ) ] }  = l n $ ( ~  + in [ln (~m) 1 

(18) 
Taking into account the two different volumes in 
Equation 18 we obtain 

ln(ln[1--1vl(Oi]}--ln{ln[1--1vfO)]} 

(in V2-- In V~m) -~ 0 (19) 
= in ~ V l - - l n  

Vm --, 0 

Using regression analysis on the data plotted in 
Fig. 4, and from Equation 19 we obtain 

(lnV2--1n~mm) < 0.25 (20) 
in ~V1- -  In 

and in consequence V,, < 3.9 x 10-7m 3 since 
VI= 1.08 x 10-Sm 3, V~= 1.672 x 10-Sm 3 or 
2.76 x 10-Sm 3, so that there is no influence of 
volume, which is also the case with tensile stress. 
As a consequence of all this the Kittl-Giinther 
modified Weibull statistics appear to be the most 
appropriate. These statistics are based on the idea 
that increasing the volume does not imply increas- 
ing the size of flaws, and have the advantage that 
its parameters can be related to the size and dis- 
tribution of the flaws. This fact has been shown by 
de Jayatilaka and Trustrum [ 1 ]. 
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